Remarkably, nearly the same sequence of events also occurred on another Pacific island in 2018. Ambrym, a highly active volcano in the South Pacific nation of Vanuatu, experienced historic changes in 2018 that paralleled those on Kilauea.
Prior to 2018, the summit caldera on Ambrym Volcano hosted five churning lava lakes. In the weeks prior to the eruption, at least one of the lava lakes showed a significant rise, similar to what happened before Kilauea’s 2018 eruption.
Earthquakes began at the summit on December 14, and soon magma intruded along Ambrym’s southeast rift zone, creating extensive ground cracking. Within two days, all five lakes had drained and the craters collapsed inwards, as ash plumes rose from the summit.
On Dec. 17, the magma migration stopped. Soon after, residents observed pumice drifting on shore, signaling that a submarine eruption had occurred far down the rift zone. At the summit, a water lake soon replaced one of the lava lakes in the collapsed crater.
Although ground cracking at Ambrym produced damage to buildings in 2018, the eruption could have been more hazardous if it had happened onshore. In 1913, a similar pattern of activity occurred at Ambrym, producing an onshore eruption that destroyed a hospital.
A newly published study on the 2018 Ambrym eruption, written by an international team of scientists, highlights that the rising lake level prior to the eruption was a likely sign of building pressure in the summit magma chamber.
The authors note that this pattern has been documented in detail at Kilauea, which has a more extensive monitoring network. In essence, summit lava lakes are giant pressure gauges of the underlying magma chamber, akin to a liquid barometer.
Analysis of the lava chemistry showed that the magmatic dike at Ambrym had intersected a peripheral, isolated pocket of older magma on its route along the rift zone. This mixing of new and old magma also occurred during the 2018 lower East Rift Zone eruption of Kilauea, with implications for eruption rates and hazards.
The Ambrym and Kilauea observations suggest that rapidly rising summit lava lakes may be a common harbinger of upcoming flank eruptions. Taken together, the eruptions at Kilauea and Ambrym have some important lessons for hazard forecasting.
This process has implications for hazards at yet another volcano that is known for lava lake activity. Nyiragongo, in the Democratic Republic of the Congo, hosts a large summit lava lake that has been intermittently active for decades.
Rising lake levels preceded large flank eruptions in 1977 and 2002 at Nyiragongo. The 1977 eruption produced unusually fast lava flows, killing scores of people. Lava flows from the 2002 eruption covered a large portion of the city of Goma, leaving 120,000 people homeless and displacing many more.
Currently, the Nyiragongo lake has risen to a high level, roughly similar to that before the 1977 and 2002 eruptions. Another recent study, by a different international team of scientists, has forecast that this could lead to a new flank eruption in several years.
It’s worth noting that the current lava lake at Kilauea, which started forming in December 2020, is fundamentally different than the lake that was present before 2018. The current lake is lava that is passively ponding at the bottom of Halema‘uma‘u crater, and isn’t situated directly over the conduit that rises from the magma chamber. This means its lava level changes can’t be used as a pressure gauge in the same manner.
Over the years, communities on Kilauea, Ambrym, and Nyiragongo have been devastated by eruptions fed by magma draining from their summits. Our hope is to develop a better understanding of these flank eruptions and their precursors, and use that knowledge to reduce risk and improve forecasts in the future.
Visit https://www.usgs.gov/observatories/hawaiian-volcano-observatory for past Volcano Watch articles, Kilauea and Mauna Loa updates, volcano photos, maps, recent earthquake info, and more. Email questions to askHVO@usgs.gov.
Volcano Watch is a weekly article and activity update written by U.S. Geological Survey Hawaiian Volcano Observatory scientists and affiliates.
Volcano Activity Updates
Kilauea Volcano is erupting. Its USGS Volcano Alert level is at WATCH (https://www.usgs.gov/natural-hazards/volcano-hazards/about-alert-levels). Kilauea updates are issued daily.
Lava activity is confined to Halema‘uma‘u with lava erupting from a vent on the northwest side of the crater. Laser rangefinder measurements April 29 indicate that the lava in the western (active) portion of the lake was 744 feet deep, with the eastern portion of the lava lake solidified at the surface. The summit tiltmeters recorded minor change over the past 24 hours. Sulfur dioxide emission rates measured on April 25 were 375 t/d. Seismicity remains stable, with elevated tremor. For the most current information on the eruption, see https://www.usgs.gov/volcanoes/kilauea/current-eruption.
Mauna Loa is not erupting and remains at Volcano Alert Level ADVISORY. This alert level does not mean that an eruption is imminent or that progression to an eruption from the current level of unrest is certain. Mauna Loa updates are issued weekly.
This past week, about 150 small-magnitude earthquakes were recorded below Mauna Loa, most of these occurred at below the summit and at depths of less than 5 miles. GPS measurements have recently shown variability in summit deformation patterns, moving from contractional to slightly extensional over the past week. Gas concentrations and fumarole temperatures at both the summit and at Sulphur Cone on the Southwest Rift Zone remain stable. Webcams show no changes to the landscape. For more information on current monitoring of Mauna Loa Volcano, visit https://www.usgs.gov/volcanoes/mauna-loa/monitoring.
There were two events with three or more felt reports in the Hawaiian Islands during the past week: a magnitude-3.4 earthquake 18 miles southwest of Hawaiian Ocean View Estates on April 26 at 6:18 a.m. and a magnitude-2.8 earthquake 8 miles south of Honokaa on April 26 at 2:09 a.m.